

1

PDF Version just showing the Pics, Drawings and Code

Learning Programming

with MyCo
By Juergen Pintaske

Easy to learn and PC independent – only this kit

picture is in German

2

Contents

0_Background

1_Introduction

2_Hardware tests

2.1_The basic structure

2.2_Two flashing LEDs

2.3_Counter combined with PWM

2.4_The Analog-to-Digital converter

2.5_Random number generator

2.6_Pulse length measurement

3_The programming mode

3.1_Reading out programs

3.2_Programming new functions

3.3_Back to factory status

4_MyCo instructions

4.1_The basic instructions

4.2_Calculations using Variables

4.3_Jumps and Skips

4.4_The instruction table

5_Program structures and sample programs

5.1_Counting loops

5.2_Compare instructions

5.3_Single bit processing

5.4_Basic logic functions

5.5_Subroutines

6_Advanced applications

6.1_Twilight switch

6.2_Two-point controller

6.3_LED dimmer

6.4_Morse code program

6.5_Start / Stop timer

6.6_Combination lock

7_The inner workings of MyCo

8_Appendix

3

8.1_Listings of sample programs

8.2_Instruction table

8.3_Programming model A, B, C

8.4_Circuit diagram

8.5_Function symbol

8.6_PCB with components

8.7_Header connectors SV1 and SV2

8.8_Hexadecimal table

8.9_Holtek processor block diagram

8.10_Breadboard

8.11_Resistor colors

8.12_Flow diagram symbols

8.13_Extension via PC Control Interface - Profilab

8.14_Circuit digram, Instruction Table

8.15_Programming pages

8.16_Links

4

First I have to say thank you to the many people who helped to make

this eBook happen, and just to mention a few:

Burkard Kainka, the genius behind the German kit who started me on

this venture, which proved a lot more time consuming that expected.

Franzis Electronic Kits who sent me some kits immediately, so I

could take my own photographs and to let others play with the kit

and give feedback.

And my family:

PPP - Patrick Pintaske Photography helped with some of the pictures

and editing

Lisa Pintaske with art help and advice

My wife Barbara, the one to help, check the book, correct and add

her own inputs.

Ralf Lieb and Michael Schwope with feedback and inputs for future

extensions, e.g. the build at the end

Copyright Dipl.-Ing. Juergen Pintaske, ExMark, May 2014v16

All product names mentioned here are under the copyright of the

relevant company or copyright owner.

We have taken great care to ensure that all of the drawings are

correct. We appreatiate feedback to epldfpga@aol.com to enable us

to correct further editions of this eBook.

This eBook is the description of an existing kit as seen on the

cover page. We denounce any liability regarding build and use of

it, or for damages that might arise when used in applications.

This is an educational device to be used as is, connecting it to

aditional external components could be dangerous.

This is one of the 4 eBooks I have published recently:

Forth – The Early Years - goo.gl/y2Zlud

Forth – Programming a Problem Oriented Language -

goo.gl/SVRdyF

Forth Tutorial using free MPE VFX Forth - http://goo.gl/7nK36V

http://goo.gl/y2Zlud
http://goo.gl/SVRdyF
http://goo.gl/7nK36V

5

0 – Background to this eBook

When I saw this little kit on the Internet and read what it can do, I

could not believe it. A complete computer that you can program,

including keyboard and display, input and output. No PC required.

Yes, the absolute minimum, but it works. Looking at the low cost

and having a bit of fun, was definitely worth the time and the money.

You will have to solder the pieces together, but there should always

be somebody around who can help if needed. And I assume soon you

will be able to buy and sell the kits on eBay already soldered together

– ready to go.

If you look at pictures 1, 2 and 3 on the cover page, you see the

original box it came in and the little PCB with the Microcontroller on

it. There are additional parts included to start you off with the first

experiments using pre-programmed code. No need to learn

programming first. To make life easier for me afterwards, I soldered

wires on to the relevant pins while doing the soldering, to be

prepared for later experiments. In this way the hardware would be

ready, I just plug this additional new extension connector into the

breadboard, and add the components for the experiment - no more

soldering.

And the kit worked first time. A wonderful learning toy, I assume the

age range could be about 5 to 95. Having gone through the examples,

you will understand the basic workings and structure of a computer

and as well you can do a little of your own programming. And kids

can use it to add functions to their toys – all under software control. I

will soon give the kit to some of my neighbors who are teachers,

asking for feedback about what the kids think having played with it.

As I live in the UK now, it all has to be in English for them, but this

kit is only available in German at the moment. So I decided to write

my first eBook.

To give the English speaking community the chance to relate to the

German booklet that comes with the kit, I tried to keep the sequence

the same. The name of the kit in German is TPS (roughly translated

Switch Programming System), but the designer Burkhard Kainka

allowed me to give it my own name. There was a short christening,

and MyCo was born - My little Computer.

6

I hope you have fun reading this eBook, and if you are brave, you

might even order the German Kit - I got mine via Amazon within 3

days, build it and enjoy. All of the information in the German

booklet and more is in this eBook. To help with your first

programming even without having the kit, I generated the

Programming Page in the Appendix. Fill in your program and see

how the data flows, writing code and data into the relevant boxes. All

of the programs in this eBook are identical. Even many of the

pictures. If some of the information seems to be too difficult, you can

continue with the examples and go back later.

There is a lot more that has happened around this little kit in the

meantime, so there might be a another eBook later. Any feedback

please to epldfpga@aol.com. Your own programs or applications you

can forward to us, including please the ok to publish it on our

website or in another eBook; if there is time we will keep a MyCo

area on our website, have a look. Some more information you will

find on our website www.exemark.com. Enjoy.

7

Specification:

Microcontroller: Holtek HT46F47

Clock frequency: about 2 MHz

Internal EEPROM: 128 Bytes

Power supply voltage: 2.2 V to 5.5 V

Current consumption: about 1 mA at 4.5 V

4 output pins: support up to 10 mA

1 PWM output: supports up to 10 mA

4 input lines: internal resistor sets to 1

2 analog inputs: 0 V ... Vcc

2 switch inputs: internal resistors set it to 1

Components in this learning package:

1 PCB

1 Holtek HT46F47 pre-programmed with TPS firmware

1 IC socket

3 Push buttons

4 LEDs 3 mm, red - short wire cathode (into square PCB hole)

1 LED 3 mm, green - short wire cathode (into square PCB hole)

1 LDR - Light Dependant Resistor

1 Piezo transducer

3 Capacitors 100 nF

1 Polarised capacitor 47 uF

5 Resistors 2.2 kOhm - red red red plus other colors

1 Resistor 10 kOhm - brown black orange plus other colors

1 Resistor 27 kOhm - red violet orange plus other colors

2 Resistors 100 kOhm - black brown yellow plus other colors

1 Wire 1m

1 Battery compartment with wires, for 3 AA batteries

8

Figure 1.1: Circuit diagram including SV1 and SV2 connections

Figure 1.2: Circuit diagram of the board, reduced to main

functions

9

Figure 1.3: Component locations top view of the board, about 40

x 60 mm

Figure 1.4t: The blank PCB, with the 4 Output LEDs 8,4,2,1 top

left

10

Figure 1.4b: Bottom side of the blank PCB

Figure 1.4l: Additional LED tester using the PWM resistor and

LED

.

11

Figure 1.5: Standard setup with push-button switches and my

added extension board

Figure 1.6: The use of screw terminals on top side

12

Figure 1.7: Use of the two pin header connectors

S2 1 2 S1

Reset 3 4 PWM

A1 5 6 A2

A3 7 8 A4

GND 9 10 VCC

Header connector SV1, as on the board

VCC 10 9 GND

E4 8 7 E3

E2 6 5 E1

AD2 4 3 AD1

S1 2 1 S2

Header connector SV2, (as on the board, turned 180º)

Figure 2.1: Four LEDs on the outputs

13

2.2 - Two flashing LEDs

Address Instruction Data Comment

20 1 1 LED 1 on, out 0001

21 2 8 Wait for 500 ms

22 1 8 LED 8 on, out 1000

23 2 8 Wait for 500 ms

24 3 4 Jump to - 4

Listing 2.1: Switch on one LED and then another one

Figure 2.2: No extra wiring for this program listing 2.1

2.3 - Counter combined with PWM

Figure 2.3: Counter and PWM function shown via the LED

14

Figure 2.4: The binary counter

Address Instruction Data Comment

25 7 1 A <= A + 1

26 5 4 Port <= A

27 5 9 PWM <= A

28 2 6 Wait 100 ms

29 3 4 Jump to - 4

Listing 2.2: Binary counter with LED and PWM output

15

„8“ „4“ „2“ „1“ Decimal Hexadecimal

0 0 0 0 0 0

0 0 0 1 1 1

0 0 1 0 2 2

0 0 1 1 3 3

0 1 0 0 4 4

0 1 0 1 5 5

0 1 1 0 6 6

0 1 1 1 7 7

1 0 0 0 8 8

1 0 0 1 9 9

1 0 1 0 10 A

1 0 1 1 11 B

1 1 0 0 12 C

1 1 0 1 13 D

1 1 1 0 14 E

1 1 1 1 15 F

4 bit in binary, decimal and hexadecimal

Figure 2.5: Low-pass filter on the PWM output

16

Figure 2.6: Smoothened PWM output voltage as analog output

2.4 - The Analog-to-Digital Converter

A table of the input voltage and the expected LED display if supply

voltage is 4.0V:

Step 0 1 2 3 4 5 6 7

Volt 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Step 8 9 A B C D E F

Volt 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75

Measure the actual voltage at the input with a high impedance input

voltmeter to compare. Other resistors than 10k would give a different

response to a given range of light.

17

Figure 2.7: Connection of the light sensor

Figure 2.8: The LDR connected to input of AD1

Address Instruction Data Comment

2A 6 9 A <= AD1

2B 5 4 Port <= A

2C 5 9 PWM <= A

2D 2 6 Wait 100 ms

2E 3 4 Jump to - 4

Listing 2.3: AD converter and PWM output

18

2.5 - Random Number Generator

Figure 2.9: Start of the random number generator

Figure 2.10: Wire bridge between E3 and GND

Address Instruction Data Comment

30 5 4 Port <= A

31 C E S1 = 1?

32 7 1 A<= A + 1

33 3 3 Jump to - 3

Listing 2.4: Random Number Generator

19

Program flow shown in a different way

2.6 - Pulse Length Measurement

Figure 2.11: E4 to GND

20

Figure 2.12: Pulse length measurement using Reset and S1

Address Instruction Data Comment

34 2 2 Wait for 5 ms

35 C C S1 = 0?

36 3 2 Jump to - 2

37 4 0 A <= 0

38 2 2 Wait for 5 ms

39 7 1 A <= A + 1

3A 5 4 Port <= A

3B C E S1 = 1?

3C 3 4 Jump to - 4

3D 3 9 Jump to - 9

Listing 2.5: Time measurement

3 - The Programming Mode

3.1 - First - Reading out Programs

6 4 5 1 4 E 80 C 3 9 8 …

21

Figure 3.1: S1 and S2 and Reset for the programming mode

Figure 3.2: The three buttons, and the 4 LEDs top left are used

Address Instruction Data Comment

00 6 4 A <= Din

01 5 1 B <= A

02 4 E A <= 14

03 8 0 AddrHi <= 0

04 C 3 A = B?

Listing 3.1: Program code in pre-programmed controller

22

Just to put it into perspective:

128 byte EEPROM in MyCo as the program area for you

128 Kilobyte would be 1000 times this

128 Megabyte is 1000 x 1000 times more.

128 Gigabyte is 1000 x 1000 x 1000 times what we use here. (USB

sticks have now mostly 4 to 32GB)

3.2 - Programming new Functions

23

Address Instruction Data Comment

00 1 7 A1...4 <= 0111

01 3 0 Jump to - 0

Listing 3.2: Turn on 3 LEDs

Address Instruction Data Comment

00 6 4 A <= Din

01 5 4 Dout <= A

02 3 2 Jump to -2

Listing 3.2a: Status of IN1, IN2, IN3, IN4 the 4 LEDs

S2 + Reset to put into Programming Mode

2 x S1 to reset counter and increase to 1

S2 program in this 1 and switch to the second nibble

8 x S1 reset counter to 0, then 7x to get to 7

S2 program this 7 in, increment to address 01

4 x S1 reset counter for instruction, 3x to get to 3

S2 program 3 in and change to data

1 x S1 only 1x S1 to reset internal counter

S2 program 0 in

3.3 - Back to Factory Status

Address Instruction Data Comment

00 F F -

01 F F -

Listing 3.3: Return controller to the pre-programmed state

24

4 - MyCo Instructions

4.1 - The Basic Commands MyCo can execute

and the data flow. Input and output we know already, each 4 bit

wide.

Figure 4.1a: Programming model as block

Figure 4.1b: Programming model in string form for program

execution on paper

The different blocks in this string:
PrCtr Program counter needs 2 nibbles

In Dat Instruction and Data nibbles

PGE Page register

DLY Delay time

SkC Skip Control bit, if Yes then skip

In_n 4 input lines

RgA Register A

ALU Arithmetic and Logic Unit

RgB Register B

RgC Register C

RgD Register D

AD1 Analog-to-digital converter 1

AD2 Analog-to-digital converter 2

PWM Pulse Width Modulation output

25

OUT Output register

1248 4 bit output and LEDs

Figure 4.1c: Programming model as 2 blocks for program

execution on paper

 1 is easy to remember One, the first letter gives you the O for

 output

 2 is as simple, because wait takes TOO long

 3 is a bit more difficult, but for now you THRow the ball back

Address Instruction Data Comment

00 1 1 A1...4 <= 0001

01 2 8 Wait for 500 ms

02 1 8 A1...4 <= 1000

03 2 8 Wait for 500 ms

04 3 4 Jump to - 4

Listing 4.1: Blink program, hex 11 28 18 28 34

Address Instruction Data Comment

00 1 1 LEDs to 0001

26

01 2 8 Wait for 500 ms

02 1 2 LEDs to 0010

03 2 8 Wait for 500 ms

04 1 4 LEDs to 0100

05 2 8 Wait for 500 ms

06 1 8 LEDs to 1000

07 2 8 Wait for 500 ms

08 3 8 Jump to - 8

11 28 12 28 14 28 18 28 38

Listing 4.2: Running Light 1

Address Instruction Data Comment

00 1 1 LEDs 0001

01 2 8 Wait for 500 ms

02 1 2 LEDs 0010

03 2 8 Wait for 500 ms

04 1 4 LEDs 0100

05 2 8 Wait for 500 ms

06 1 8 LEDs 1000

07 2 8 Wait for 500 ms

08 1 4 LEDs 0100

09 2 8 Wait for 500 ms

0A 1 2 LEDs 0010

0B 2 8 Wait for 500 ms

0C 3 C Jump to - 12

11 28 12 28 14 28 18 28 14 28 12 28 3C

Listing 4.3: Running Light 2, right to left and back

Address Instruction Data Comment

00 1 F LEDs to 1111

01 2 F Wait for 1 min

02 1 0 LEDs to 0000

03 3 0 End

27

1F 2F 10 30

Listing 4.4: Timer for one minute

4.2 - Calculations using Variables

 Address Instruction Data Comment

00 4 0 A <= 0

01 7 1 A <= A + 1

02 5 4 Port <= A

03 5 9 PWM <= A

04 2 6 Wait for 100 ms

05 3 4 Jump to - 4

Program code: 40 71 54 59 26 34

Listing 4.5: Increment by one, show on LEDs and PWM

Address Instruction Data Comment

00 6 9 A <= AD1

01 5 4 Port <= A

02 7 A A <= Not A

03 5 9 PWM <= A

04 2 6 Wait 100 ms

05 3 5 Jump to - 5

Program code: 69 54 7A 59 26 35

Listing 4.6: Inverting the contents of A

28

4.3 - Jumps and Skips

Flowchart 1: Do a test, SKIP over if Yes, else next instruction

Address Instruction Data Comment

30 5 4 Port <= A

31 C E S1 = 1?

32 7 1 A<= A + 1

33 3 3 Jump to - 3

Listing 2.4: Random Number Generator

 Address Instruction Data Comment

00 C C S1 = 0?

01 3 1 Jump to - 1

02 4 0 A <= 0

03 7 1 A <= A + 1

04 5 4 Port <= A

05 C E S1 = 1?

06 3 3 Jump to - 3

07 3 7 Jump to - 7

CC 31 40 71 54 CE 33 37

Listing 4.7: S1 button response with higher resolution

29

Address Instruction Data Comment

00 8 3 Set to page 3

01 9 4 Jump to Address = x4

83 94

Listing 4.8: Absolute Jump to pre-programmed timer program

4.4 - The Instruction Table

30

5 - Program Structures and Sample Programs

5.1 - Counting Loops

Address Instruction Data Comment

00 4 5 A <= 5

01 5 2 C <= A

02 1 5 Port <= 0101

03 2 8 Wait 500 ms

04 1 A Port <= 1010

05 2 8 Wait 500 ms

06 8 0 Set to Page 0

07 A 2 C times 02

08 3 0 End

45 52 15 28 1A 28 80 A2 30

Listing 5.1: A timing loop

Address Instruction Data Comment

00 4 5 A <= 5

01 5 2 C <= A

02 8 0 AddrHi <=0

03 A 5 C-times 05, skip if not 0

04 3 0 End

05 1 5 Port <= 0101

06 2 8 Wait for 500 ms

07 1 A Port <= 1010

08 2 8 Wait for 500 ms

09 3 6 Jump to - 6

45 52 80 A5 30 15 28 1A 28 36

Listing 5.2: Five times flashing

31

5.2 - Compare Instructions

Address Instruction Data Comment

00 4 5 A <= 5

01 5 1 B <= A

02 8 0 AddrHi = 0

03 6 9 A <= AD1

04 C 1 Skip if A>B

05 9 8 Page Addr 08

06 1 F LEDs 1111

07 3 4 Jump to Addr 03

08 1 0 Set LEDs to 0000

09 3 6 Addr 03, 6 back

45 51 80 69 C1 98 1F 34 10 36

Listing 5.3: Simple twilight switch

5.3 - Single Bit Processing

Figure 5.1: Testing of E3/In3/Din.2

Address Instruction Data Comment

00 6 7 A <= Din.2 (E3)

01 5 4 Port <= A

02 2 1 Wait 2 ms

03 3 3 Jump to - 3

67 54 21 33

Listing 5.4: Single bit testing and display

32

Figure 5.2: Controlling output A3/O3

Address Instruction Data Comment

00 7 1 A <= A + 1

01 5 7 Port.2 <= A.0

02 2 8 Wait for 500 ms

03 3 3 Jump to - 3

71 57 28 33

Listing 5.5: A blinking LED on A3/O3/4

Figure 5.3: Inverted output

Address Instruction Data Comment

00 6 7 A <= Din.2

01 7 A A = NOT A

02 5 8 Port.3 <= A.0

03 3 3 Jump to - 3

67 7A 58 33

Listing 5.6: Invert a single bit and copy to O4/Port.3

33

Figure 5.4: Change over switch with two outputs

Address Instruction Data Comment

00 C 6 Skip if Din.2=1

01 1 1 Port <= 1 (0001)

02 C 7 Skip if Din.3=1

03 1 8 Port <= 8 (1000)

04 3 4 Go to Addr = 0

C6 11 C7 18 34

Listing 5.7: An RS flip-flop (Reset and Set)

5.4 - Basic Logic Functions

AND X Y Result

 0 0 0

 0 1 0

 1 0 0

 1 1 1

Figure 5.6: The four inputs E1…E4 (In1…In4)

and 4 outputs A1…A4 (O1…O4), ANDing with 0011

Masking bit 0 and 1 in, masking bit 2 and 3 out

34

Address Instruction Data Comment

00 6 4 A <= Din

01 5 1 B <= A

02 4 3 A <= 3 (0011)

03 7 7 A<= A AND B

04 5 4 Port <= A

05 3 5 Jump to - 5

64 51 43 77 54 35

Listing 5.8: Implementation of the AND function to mask bits

OR X Y Result

 0 0 0

 0 1 1

 1 0 1

 1 1 1

XOR X Y Result

 0 0 0

 0 1 1

 1 0 1

 1 1 0

INVERT Y Result

 0 1

 1 0

35

5.5 - Subroutines

Main program:

Address Instruction Data Comment

00 8 0 AddrHi <=0

01 D 8 Call 08

02 5 4 Dout <= A

03 2 9 Wait for 1 s

04 D 8 Call 08

05 5 4 Dout <= A

06 2 8 Wait for 0,5 s

07 3 7 Jump to - 7

Subroutine:

Address Instruction Data Comment

08 7 2 A <= A - 1

09 E 0 Return

80 D8 54 29 D8 54 28 37 72 E0 as main and sub follow each other in

code space

Listing 5.9: Main program and subroutine calls

Address Instruction Data Comment

00 4 0 A <= 0

01 5 4 Dout <= A

02 7 1 A <= A + 1

03 8 6 Set to Page 6

04 D 0 Call 60 to read S1

05 3 4 Jump to - 4

40 54 71 86 D0 34

Listing 5.10: Counter, controlled via S1

36

6 - Advanced Applications

6.1 - Twilight Switch

Address Instruction Data Comment

00 1 0 Set LEDs to 0000

01 4 5 A <= 5

02 5 1 B <= A

03 6 9 A <= AD1

04 C 1 Skip if A>B

05 1 0 Set LEDs to 0000

06 4 9 A <= 9

07 5 1 B <= A

08 6 9 A <= AD1

09 C 2 Skip if A<B

0A 1 F Set LEDs to 1111

0B 3 A Jump to -10 =01

10 45 51 69 C1 10 49 51 69 C2 1F 3A

Listing 6.1: Twilight switch with hysteresis

6.2 - Two Point Controller

.

Figure 6.1: Control loop using AD2

37

Figure 6.2: Voltage control via AD2

Address Instruction Data Comment

00 6 9 A <= AD1

01 5 1 B <= A

02 8 0 AddrHi <= 0

03 6 A A<=AD2

04 C 1 Skip if A>B

05 9 8 Addr 08

06 1 0 Output 0000

07 3 7 Jump to - 7

08 1 8 Output 1000

09 3 9 Jump to - 9

69 51 80 6A C1 98 10 37 18 39

Listing 6.2: The voltage follow loop

38

6.3 - LED Dimmer

Address Instruction Data Comment

00 8 0 AddrHi <= 0

01 5 9 PWM <= A

02 2 7 Wait for 200 ms

03 5 2 C <= A

04 4 F A <= 15

05 5 1 B <= A

06 6 2 A <= C

07 C 2 Skip if A<B

08 9 B Jump to 0B

09 C F Skip if S2=1

0A 7 1 A <= A + 1

0B 5 2 C <= A

0C 4 0 A <= 0

0D 5 1 B <= A

0E 6 2 A <= C

0F C 1 Skip if A>B

10 9 0 Jump to 00

11 C E Skip if S1 = 1

12 7 2 A <= A - 1

15 9 0 Jump to 00

80 59 27 52 4F 51 62 C2 9B CF 71 52 40 51 62 C1 90 CE 72 90

Listing 6.3: Brightness control

39

6.4 – Morse Code Program

Address Instruction Data Comment

00 8 0 Set to page 0 >long

01 4 F A <= 15

02 9 4 Jump to Addr 04

03 4 5 A <= 5 >short

04 5 3 D <= A >variable

05 1 8 Dout 8

06 1 0 Dout 0

07 2 1 Wait for 2 ms

08 1 8 Dout 8

09 1 0 Dout 0

0A 2 1 Wait for 2 ms

0B 1 8 Dout 8

0C 1 0 Dout 0

0D 2 0 Wait for 1 ms

0E B 5 D * 5

0F 3 0 End here, stop

80 4F 94 45 53 18 10 21 18 10 21 18 10 20 B5 30

Listing 6.4: Test the sound output

Figure 6.3 Connection of the piezo transducer

40

Figure 6.4: Sound output from A4

Morse Code : BK - long - short - short - short ---long - short - long

Address Instruction Data Comment

00 8 5 AddrHi <=5

01 D 0 Call 50, long

02 2 6 100 ms

03 D 2 Call 52, short

04 2 6 100 ms

05 D 2 Call 52, short

06 2 6 100 ms

07 D 2 Call 52, short

08 2 6 100 ms

09 2 7 200 ms

0A D 0 Call 50, long

0B 2 6 100 ms

0C D 2 Call 52, short

0D 2 6 100 ms

0E D 0 Call 50, long

0F 3 0 End, loop

85 D0 26 D2 26 D2 26 D2 26 27 D0 26 D2 26 D0 30

Listing 6.5: Morse code sound output

41

For more about Morse code, see Wikipedia:

http://en.wikipedia.org/wiki/Morse_code

6.5 - Start / Stop Timer

Address Instruction Data Comment

00 8 6 Set to Page 6 “Timer

Start/Stop”

01 D 0 Call “Wait for S1” on page 6

02 4 0 A <= 0

03 7 1 A <= A + 1

04 5 4 Port <= A

http://en.wikipedia.org/wiki/Morse_code
http://en.wikipedia.org/wiki/Morse_code

42

05 2 9 Wait for 1 s

06 C D S2 = 0?

07 3 4 Jump to - 4

08 D 8 Call “Wait S2”

09 4 0 A <= 0

0A 5 4 Port <= A

0B 3 B Jump to - 11 (addr 00)

86 D0 40 71 54 29 CD 34 D8 40 54 3B

Listing 6.6: Stopwatch

Address Instruction Data Comment

00 8 4 Set to Page 4

01 9 0 Jump to 40

84 90

Listing 6.7: Main program to start the stopwatch demo program

6.6 - Combination Lock

43

Address Instruction Data Comment

00 C C Is S1 = 0?

01 3 1 Jump to - 1

02 4 0 A <= 0

03 5 4 Dout <= A

04 2 3 Wait for 10 ms

05 C E Is S1 = 1?

06 3 2 Jump to Addr 04

07 C F S2 = 1?

08 3 0 End

09 C C Is S1 = 0?

0A 3 3 Jump to Addr 07

0B 7 1 A <= A + 1

0C 2 3 Wait for 10 ms

0D C C Is S1 = 1?

0E 3 1 Jump to Addr 0D

0F 3 C Jump to Addr 03

CC 31 40 54 23 CE 32 CF 30 CC 33 71 23 CC 31 3C

Listing 6.8: Listing of the combination lock

Address Instruction Data Comment

00 8 7 Set to Page 7

01 4 3 A <= 3

02 5 1 B <= A

03 D 0 Call 70

04 C 3 Skip if A=B

05 3 0 End - wrong

06 1 0 LEDs off

07 4 5 A <= 5

08 5 1 B <= A

09 D 0 Call 70

0A C 3 Skip if A=B

0B 3 0 End - wrong

44

0C 1 0 LEDs off

0D 4 2 A <= 2

0E 5 1 B <= A

0F D 0 Call 70

10 C 3 Skip if A=B

11 3 0 End - wrong

12 1 0 LEDs off

13 4 F A <= 15

14 5 9 PWM <= A

15 3 0 End

87 43 51 D0 C3 30 10 45 51 D0 C3 30 10 42 51 D0 C3 30 10 4F 59

30

Listing 6.9: The combination lock

7 - The Inner Workings of MyCo

Having gone through the sample programs and having had a taste,

you are probably now ready to understand most the inner workings

better:

Figure 7.1: The circuit diagram

45

Figure 7.2: The inner functionality as block

Figure 7.3a: The inner functionality all in a row

Figure 7.3b: The inner functionality broken into two rows

Any feedback to this eBook please send to epldfpga@aol.com.

We tried to eliminate as many issues, typos, … as possible.

But we know we are human, so errors are possible, but known ones

can be corrected in the next edition, so please keep sending them in.

And from time to time have a look at our website

www.exemark.com, we will try to add pages there with additional

info.

mailto:epldfpga@aol.com
http://www.exemark.com/

46

8 - Appendix

8.1 - Listing of sample programs

Address Instruction Data Comment

00 6 4 A <= Din

01 5 1 B <= A

02 4 E A <= 1110

03 8 0 Page 0

04 C 3 A = B?

05 9 8 Jump to 08

06 8 2 Set page to 2

07 9 5 Jump to 05

08 4 D A <= 1101

09 8 0 Set to Page 0

0A C 3 A = B?

0B 9 E Jump back E addresses

0C 8 2 Set to Page 2

0D 9 A Jump to 2A, AD/PWM

0E 4 B A <= 1011

0F 8 1 Set to Page 1

64 51 4E 80 C3 98 82 95 4D 80 C3 9E 82 9A 4B 81

Page 0 of the EEPROM, and starting from 0 after Reset:

selection and start of example programs

Address Instruction Data Comment

10 C 3 A = B?

11 9 4 Jump to 34

12 8 3 Set to Page 3

13 9 0 Jump to 30, “Random”

14 4 7 A <= 0111

15 8 1 Set to Page1

47

16 C 3 Is A =B?

17 9 A Jump 1A

18 8 3 Set to Page 3

19 9 4 Jump to 34, “Stop S1”

1A 4 3 A <= 0011

1B 8 2 Set to 2

1C C 3 Is A =B?

1D 9 0 Jump to 20 “LED blink”

1E 8 4 Set to Page 4

1F 9 0 Jump to 40 “Stop S1/S2”

C3 94 83 90 47 81 C3 9A 83 94 43 82 C3 90 84 90

Page 1: Select and run the example programs

Address Instruction Data Comment

20 1 1 Output 0001 “2 LED Blink”

21 2 8 Wait for 500 ms

22 1 8 Output 1000

23 2 8 Wait for 500 ms

24 3 4 Jump 4 back 4

25 7 1 A <= A + 1 “Count”

26 5 4 Port <= A

27 5 9 PWM <= A

28 2 6 Wait for100 ms

29 3 4 Jump - 4

2A 6 9 A <= AD1 “AD/PWM”

2B 5 4 Port <= A

2C 5 9 PWM <= A

2D 2 6 Wait for 100 ms

2E 3 4 Jump by - 4

2F F F -

11 28 18 28 34 71 54 59 26 34 69 54 59 26 34 FF

48

Page 2: Example programs: alternate flashing, counting, AD /

PWM

Address Instruction Data Comment

30 5 4 Port <= A “Random”

31 C E S1 <= 1?

32 7 1 A <= A + 1

33 3 3 Jump - 3

34 2 2 Wait for 5 ms “Stop on S1”

35 C C Is S1 = 0?

36 3 2 Jump by -2

37 4 0 A <= 0

38 2 2 Wait for 5 ms

39 7 1 A <= A + 1

3A 5 4 Port <= A

2B C E S1 = 1?

3C 3 4 Jump by - 4

3D 3 9 Jump by - 9

3E F F -

3F F F -

54 CE 71 33 22 CC 32 40 22 71 54 CE 34 39 FF FF

Page 3: Example programs: random number, stopwatch S1

Address Instruction Data Comment

40 8 6 Set to Page 6 “Start/Stop”

41 D 0 Call “Wait S1” at 60

42 4 0 A <= 0

43 7 1 A <= A + 1

44 5 4 Port <= A

45 2 3 Wait for10 ms

49

46 C D Is S2 = 0?

47 3 4 Jump by - 4

48 D 8 Call “Wait for S2”

49 4 0 A <= 0

4A 5 4 Port <= A

4B 3 B Jump by - 11

4C F F -

4D F F -

4E F F -

4F F F -

86 D0 40 71 54 23 CD 34 D8 40 54 3B FF FF FF FF

Page 4: Example program stop watch start / stop

Address Instruction Data Comment

50 4 F A<=15 “Sound long”

51 9 3 Jump to Addr 03

52 4 5 A<=5 “Sound short”

53 5 3 D<=A “Sound variable”

54 1 9 A4 <= 1

55 1 1 A4 <= 0

56 2 1 2 ms delay

57 1 9 A4 <= 1

58 1 1 A4 <= 0

59 2 1 2 ms

5A 1 9 A4 <= 1

5B 1 1 A4 <= 0

5C 2 0 delay 1 ms

5D B 4 D times 04

5E 1 0 Dout <=0

5F E 0 Return

50

 4F 93 45 53 19 11 21 19 11 21 19 11 20 B4 10 E0

Page 5: Subroutine sound output

Address Instruction Data Comment

60 2 3 Wait 10 ms “Wait S1”

61 C E S1 = 1?

62 3 2 Jump to - 2

63 2 3 Wait for 10 ms

64 C C S1 = 0?

65 3 1 Jump to - 1

66 E 0 Return

67 F F -

68 2 3 Wait for 10 ms “Wait S2”

69 C F S2 = 1?

6A 3 2 Jump to - 2

6B 2 3 Wait for 10 ms

6C C D S2 = 0?

6D 3 1 Jump to - 1

6E E 0 Return

6F F F -

23 CE 32 23 CC 31 E0 FF 23 CF 32 23 CD 31 E0 FF

Page 6: Subroutines waiting for S1 and for S2

Address Instruction Data Comment

70 C C S1 = 0? “Switch Input“

71 3 1 Jump to - 1

72 4 0 A = 0

73 5 4 Port = A

74 2 3 Wait for 10 ms

75 C E S1 = 1?

51

76 3 2 Jump to - 2

77 C F S2 = 1?

78 E 0 Return

79 C C S1 = 0?

7A 3 3 Jump to - 3

7B 7 1 A = A + 1

7C 2 3 Wait for 10 ms

7D C C S1 = 1?

7E 3 1 Jump to - 1

7F 3 C Jump to - 12

CC 31 40 54 23 CE 32 CF E0 CC 33 71 23 CC 31 3C

Page 7: Subroutine switch input

__

52

8.2 - Instruction Table

8.3 - Programming Model A

Programming Model B, all in one row

53

Programming model C, split up

8.4 - MyCo Circuit Diagram

8.5 - MyCo Function Symbol

54

8.6 - PCB top view with all components

S2 1 2 S1

Reset 3 4 PWM

A1 5 6 A2

A3 7 8 A4

GND 9 10 VCC

Header connector SV1

same way on the board

S2 1 2 S1

AD1 3 4 AD2

E1 5 6 E2

E3 7 8 E4

GND 9 10 VCC

Header connector SV2,

turned 180 degrees on the board

if populated, use angled version

55

8.7 – Header Connectors

„8“ „4“ „2“ „1“ Decimal Hexadecimal

0 0 0 0 0 0

0 0 0 1 1 1

0 0 1 0 2 2

0 0 1 1 3 3

0 1 0 0 4 4

0 1 0 1 5 5

0 1 1 0 6 6

0 1 1 1 7 7

1 0 0 0 8 8

1 0 0 1 9 9

1 0 1 0 10 A

1 0 1 1 11 B

1 1 0 0 12 C

1 1 0 1 13 D

1 1 1 0 14 E

1 1 1 1 15 F

8.8 - Binary, Decimal and Hexadecimal Table

Link to the Holtek processor used here

http://www.holtek.com/english/docum/uc/46f4xe.htm

And the data sheet http://www.holtek.com/pdf/uc/46f4xev140.pdf

http://www.holtek.com/english/docum/uc/46f4xe.htm
http://www.holtek.com/pdf/uc/46f4xev140.pdf

56

8.9 - Block diagram of the processor, source Holtek

data sheet

8.10 - My Maplin breadboard, 16 connections of the

Interface Connector

57

Colour
1st
Band

2nd
Band

3rd
band Multiplier Tolerance

Black 0 0 0 1 Ohm ±1%

Brown 1 1 1 10 Ohm ±2%

Red 2 2 2 100 Ohm

Orange 3 3 3 1kOhm

Yellow 4 4 4 10kOhm

Green 5 5 5 100kOhm ±0.5 %

Blue 6 6 6 1 MOhm ± 0.25%

Violet 7 7 7 10 MOhm ± 0.1%

Grey 8 8 8 ±0.0.5%

White 9 9 9

Gold 0.1 Ohm ±5%

Silver 0.01 Ohm ±10%

8.11 - Resistor Color Code (you might not have the

Internet within reach)

58

8.12 - Toolbox to draw the flow diagrams:

Square box to describe what the Instruction does,

Square Box with Exit Y: if condition NO just continue, if YES skip

over next Instruction

Arrow to next Instruction

Jump back

 Come back in

Jump forward

Get back in line,

 and next would be the small arrow down into the next block

8.13 - Interfacing MyCo to the PC to download

programs

COM port (direct port access)

Included in version:

DMM-ProfiLab: Yes Digital-ProfiLab: Yes ProfiLab-Expert: Yes

The COM port may be used to control external hardware as well. But

level shifting is needed.

The following pins are useable at the serial COM port:

4 digital inputs (CTS, DSR, RI, DCD) read in the outputs via

transistor interface

3 digital outputs (DTR, RTS, TxD) control MyCo via 3

switches connected via level shifters.

The pin assignment of the COM port depends on the connector (9

pins or 25 pins):

Connector with 25 pins:

CTS Pin 5

59

DSR Pin 6

RI Pin 22

DCD Pin 8

DTR Pin 20

RTS Pin 4

TxD Pin 2

Connector with 9 pins:

CTS Pin 8

DSR Pin 6

RI Pin 9

DCD Pin 1

DTR Pin 4

RTS Pin 7

TxD Pin 3

60

8.14 - Circuit diagram plus external parts

8.14 - Instruction Table

61

62

63

8.15 - Programming Pages

8.16 - Links

A link to Burkhard Kainka’s website, where it all started:

http://www.elektronik-labor.de/Projekte/TPS5.html

If you want more pre-programmed MyCo chips, search for

TPS in the search box, top left at http://www.ak-modul-

bus.de/cgi-bin/iboshop.cgi?search,0

Published eBook version: MyCo_ebook_v16_2014_05_08

This is probably one of the few computers that you can program

“handsfree”. We tried quickly a version where we used 3 foot

switches in parallel to the existing S1, S2 and Reset – and it

worked.

Needs getting used to though.

Just in time some other ways to build MyCo:

Version 1: A smaller version, wired underneath with copper wire

Version 2: A “Dremel” Version, no holes, ready to be integrated

into a project. Using an engraving tool to make the PCB on the

top side. Thanks Ralf for the idea and the video to prove it

works.

http://www.elektronik-labor.de/Projekte/TPS5.html
http://www.ak-modul-bus.de/cgi-bin/iboshop.cgi?search,0
http://www.ak-modul-bus.de/cgi-bin/iboshop.cgi?search,0
http://www.ak-modul-bus.de/cgi-bin/iboshop.cgi?search,0
http://www.ak-modul-bus.de/cgi-bin/iboshop.cgi?search,0

64

There will be versions with code for other microcontrollers to

add to this Holtek version; we are aiming for Atmel, Microchip

and TI MSP430 processors for now. Have a look at

www.exemark.com over the next couple of months and look for

additional information.

The C version is done

A Forth Version is in production and the whole code will be

published when stable enough.

Running in a 20 pin MSP430G2553

Here the two boards:

On the left PCB MSP430

On the right ProtoMini

http://www.exemark.com/

65

And here the board populated and running via an FTDI USB-to-

Serial cable. Forth will be on the chip, MyCo application will be on

the chip.

Thanks for reading our eBook, and we hope you had some fun and

might actually be tempted to spend the little money to buy a kit and

see it working. We might do an additional eBook later if enough new

material is available.

So we might meet again.

Short version done 2014_10_18

